Derivatives of Polynomials and Exponentials 3.1

Learning Objectives: After completing this section, we should be able to

- find the derivative of a constant function using the definition of a derivative.
- derive the derivative of a power function with an integral exponent.
- derive the Constant Multiple Rule, the Sum Rule, and the Difference Rule.
- apply the general Power Rule to find the derivative of a power function with a real-valued exponent.

3.1.1**Polynomials**

Evaluating $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ is tedious... but instructive! Let's establish some shortcuts, noting that all of them come from the definition.

• Constant Rule:

(Notz, this

Let
$$f(x) = c_{r}$$
 for any constant c.

$$f'(x) = c \qquad f(x+h) - f(x) = h_{h \to 0} \quad \frac{f(x+h) - f(x)}{h} = l_{h \to 0} \quad \frac{f(x+h) - f(x)}{h} = l_{h \to 0} \quad 0$$

$$F(x) = c \qquad f(x) = x \quad f(x) = x \quad f(x) = x \quad 0$$
Rule:

$$f(x) = x \quad f(x) = x \quad f(x) = x \quad 0$$
Rule:

$$f(x) = x \quad f(x) = x \quad f(x) = x \quad 0$$

$$F(x) = x \quad f(x) = x \quad f(x) = x \quad 0$$

$$f(x) = \frac{1}{h \to 0} \quad \frac{f(x+h) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x+h) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x+h) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x+h) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x+h) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x+h) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = 1$$

$$f'(x) = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{1}{h \to 0} \quad \frac{f(x) - f(x)}{h} = \frac{f(x) - f$$

Power rule continued:

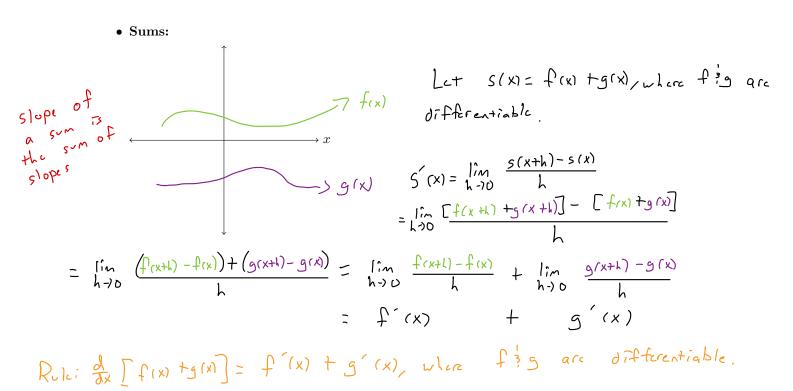
$$= \lim_{x \to a} (x^{p-1} + a x^{p-2} + \dots + a^{p-2} \cdot x + a^{p-1})$$

$$= a^{p-1} + a \cdot a^{p-2} + \dots + a^{p-2} \cdot a + a^{p-1}$$

$$= a^{p-1} + a^{p-1} + \dots + a^{p-1} + a^{p-1}$$

$$= p(a^{p-1})$$
For very shown $f'(a) = p \cdot a^{p-1}$ for any input a

$$= p(x^{p-1}) + a^{p-1} + \dots + a^{p-1}$$


Rik:
$$\frac{d}{dx} \times r^2 = p \cdot x r^{-1}$$
, for any real number p
(The above proof only works for p an integer)
 $\frac{d}{dx} \times r^{-1} = 2 f'(x) = T \cdot x^{T-1}$

• Constant Multiple:

$$g(v) = \frac{1}{h + 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{c \cdot f(x+h) - c \cdot f(x)}{h} = \lim_{h \to 0} c\left(\frac{f(x+h) - f(x)}{h}\right)$$

$$= c\left(\lim_{h \to 0} \frac{f(x+h) - g(x)}{h}\right)$$

Rule: dx (c.f(x)) = C.f'(x), where c is any constant and f is differentiable.

Example. Find the derivative of f(x).

1.
$$f(x) = x^{12}$$
 (here $\rho = 12$)
 $f'(x) = \rho x^{\rho - 1} = 12 \cdot x^{12 - 1} = 12 x^{11}$

2.
$$f(x) = 2x^{12}$$
 (constant multiple of 2)
 $f'(x) = \frac{d}{dx}(2x^{12}) = 2(\frac{d}{dx}x^{12}) = 2(12x'') = 24x''$

3.
$$f(x) = 2^{12} = 4096$$

Decivation of a Constant /
 $f'(x) = 0$.

4.
$$f(x) = \frac{-7}{8}x^{3}$$

$$f'(x) = \frac{d}{dx}\left(-\frac{7}{8}x^{3}\right) = -\frac{7}{8}\left(\frac{d}{dx}x^{3}\right)$$

$$= -\frac{7}{8}\left(3 \cdot x^{3-1}\right)$$

$$= -\frac{21}{8}x^{2}$$

You try!
5.
$$f(x) = 5x^3 + 3x + 1$$

 $f'(x) = \frac{d}{dx} \left[5 x^3 + 3x + 1 \right] = \frac{d}{dx} \left(5x^3 \right) + \frac{d}{dx} (3x) + \frac{d}{dx} (1)$
 $= 5 \left(\frac{d}{dx} x^3 \right) + 3 \left(\frac{d}{dx} x' \right) + 0$
 $= 5 \left(3x^{3^{-1}} \right) + 3 \left(1 \cdot x^{1-1} + 0 \right)$
 $= 15x^2 + 3$
6. $f(x) = 3x^{-5} = 3 \frac{1}{x^5} = \frac{3}{x^5}$

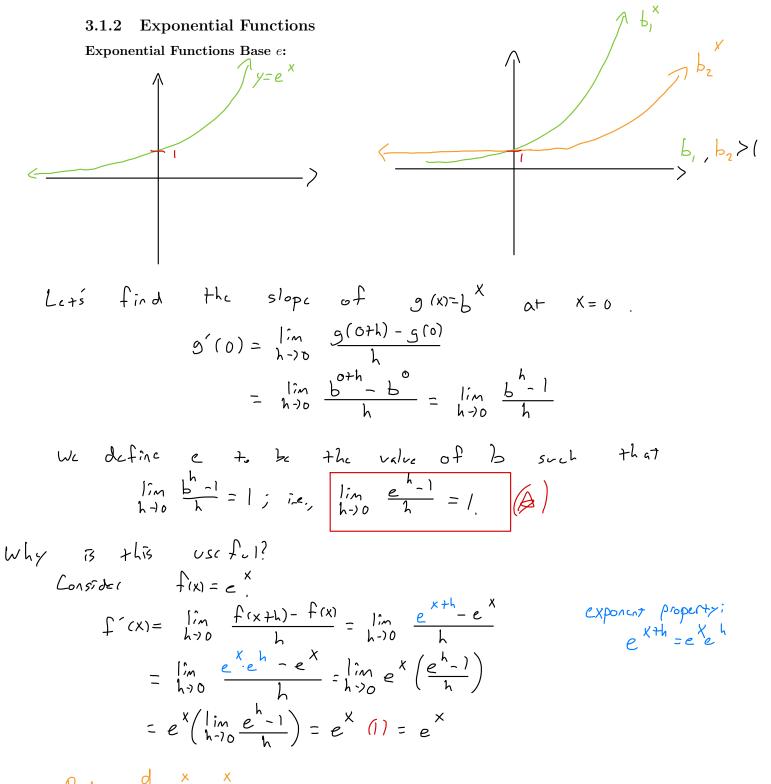
$$f'(x) = 3 \cdot (-5) x^{-5-1}$$

= -15 x⁻⁶

You try!

7.
$$f(x) = \pi x^{\pi}$$

$$f'(x) = \frac{\partial}{\partial x} (\pi x^{\pi})$$


$$= \pi \frac{\partial}{\partial x} x^{\pi}$$

$$= \pi \cdot \pi \cdot x^{\pi-1}$$

$$= \pi^{2} x^{\pi-1}$$

8.
$$f(x) = \frac{\pi}{2}\sqrt{x}$$

 $z = \frac{\pi}{2} x^{\frac{1}{2}}$
 $f'(x) = \frac{\pi}{2} \cdot \frac{1}{2} \cdot x^{\frac{1}{2} - 1} = \frac{\pi}{4} x^{-\frac{1}{2}}$

9.
$$f(x) = \sqrt[m]{x^n} = (x^n)^m = x^{n-1} = x^{n-1}$$
$$f'(x) = \frac{n}{m} x^{n-1}$$

Rule: de = ex

(\$

Example. Find the derivative of f(x).

1.
$$f(x) = \frac{e^{x}}{4} = \frac{1}{4} e^{x}$$

$$f'(x) = \frac{\partial}{\partial x} \left(\frac{1}{4} e^{x} \right) = \frac{1}{4} \frac{d}{dx} \left(e^{x} \right) = \frac{1}{4} e^{x}$$
2.
$$f(x) = \frac{e^{3}}{4} e^{4}$$

$$f'(x) = \frac{d}{dx} \left(e^{3} x^{4} \right) = e^{3} \frac{d}{\partial x} x^{4} = e^{3} \cdot 4 x^{4-1} = 4e^{3} x^{3}$$
3.
$$f(x) = \frac{e^{\pi}}{4} + x^{\pi} + \pi e^{x}$$

$$f'(x) = \frac{d}{dx} e^{\pi} + \frac{d}{dx} x^{\pi} + \pi e^{x}$$

$$f'(x) = \frac{d}{dx} e^{\pi} + \frac{d}{dx} x^{\pi} + \pi e^{x}$$

$$f'(x) = \frac{d}{dx} e^{\pi} + \frac{d}{dx} x^{\pi} + \pi e^{x}$$

$$f'(x) = \frac{d}{dx} e^{\pi} + \frac{d}{dx} x^{\pi} + \pi e^{x}$$

$$f'(x) = \frac{d}{dx} e^{\pi} + \frac{d}{dx} x^{\pi} + \pi e^{x}$$

$$f'(x) = \frac{d}{dx} e^{\pi} + \frac{d}{dx} x^{\pi} + \pi e^{x}$$

$$f'(x) = \frac{d}{dx} e^{\pi} + \frac{d}{dx} x^{\pi} + \pi e^{x}$$

$$f'(x) = \frac{d}{dx} e^{\pi} + \frac{d}{dx} x^{\pi} + \pi e^{x}$$

$$f'(x) = \frac{d}{dx} e^{\pi} + \frac{d}{dx} x^{\pi} + \pi e^{x}$$

$$f'(x) = \frac{d}{dx} e^{x} = e^{x+1}$$

$$f'(x) = \frac{d}{dx} e^{x} = e^{x+1}$$

$$f'(x) = \frac{d}{dx} e^{x} = e^{x} = e^{\frac{d}{dx}} e^{x} = e^{\frac{d}{dx}} e^{x}$$

You try!
5.
$$f(x) = 17e^{x} - x^{17}$$

 $f'(x) = \frac{d}{dx} \left[17e^{x} - x^{17} \right] = 17 \frac{d}{dx} e^{x} - \frac{d}{dx} x^{17}$
 $= 17e^{x} - 17x^{17-1} = 17e^{x} - 17x^{16}$.
all orders for

Example. Find all derivatives of ${}^{\Lambda}f(x) = x^3 - 3x^2 + 2 \times {}^{\bullet}$

$$f'(x) = 3x^{3-1} - 3 \cdot 2x^{2-1} + 2 \cdot 0x^{0-1}$$

$$= 3x^{2} - 6x + 0 = 3x^{2} - 6x$$

$$= 3x^{2} - 6x + 0 = 3x^{2} - 6x$$

$$= 3x^{2} - 6x + 0 = 3x^{2} - 6x$$

$$= 3x^{2} - 6x + 0 = 3x^{2} - 6x$$

$$= 5x^{1} - 6$$

You try!

Example. Find all derivatives of $f(x) = 3e^x + x$

$$f'(x) = \frac{d}{dx} \left[3e^{x} + x \right]$$

$$= 3 \frac{d}{dx} e^{x} + \frac{d}{dx} x$$

$$= 3e^{x} + \frac{d}{dx} x$$

$$= 3e^{x} + \frac{d}{dx} x$$

$$= 3e^{x} + \frac{d}{dx} x$$

$$= 3 \frac{d}{dx} e^{x} + \frac{d}{dx} x$$

$$= 3 \frac{d}{dx} e^{x} + \frac{d}{dx} x$$

$$= 3e^{x} + 0$$

$$S_{0} \qquad f''(x) = 3e^{x}$$

$$= 5 \qquad f'''(x) = 3e^{x}, \quad \text{for } n = 2, 3, \dots$$

$$= 5 \qquad f^{(n)}(x) = 3e^{x}, \quad \text{for } n = 2, 3, \dots$$

3.2 Product and Quotient Rules

Not

Learning Objectives: After completing this section, we should be able to

ON Exam

• derive and apply the Product Rule, and the Quotient Rule.

3.2.1 Product Rule

Question. Is $\frac{d}{dx}(f(x) \cdot g(x)) = f'(x)g'(x)$?

Let's
$$+r\gamma$$
 $f(x) = \chi^{2}$ and $g(x) = \chi^{3}$
 $f'(x) = 2\chi$ $g'(x) = 3\chi^{2}$
So $f'(x) \cdot g'(x) = (2\chi)(3\chi^{2}) = 6\chi^{3}$
Note $f(x) \cdot g(x) = \chi^{2} \cdot \chi^{3} = \chi^{2+3} = \chi^{5}$
 S_{0} $\frac{d}{d\chi} [f(x) \cdot g(x)] = \frac{d}{d\chi} \chi^{5} = 5\chi^{4}$
Not $f(x) \cdot g(x) = \chi^{2} \cdot \chi^{3} = \chi^{2+3} = \chi^{5}$
 S_{0} $\frac{d}{d\chi} [f(x) \cdot g(x)] = \frac{f}{d\chi} \chi^{5} = 5\chi^{4}$
Theorem. The product rule states $\frac{d}{dx} (f(x) \cdot g(x)) = f(x) \cdot g'(x) + f'(x) \cdot g(x)$, if $f_{1}^{2}g$ are

Not a formal proof, just 1 example!

$$proof: \frac{d}{dx} [f(x) \cdot g(x)] = \lim_{h \to 0} \frac{f(x+k)g(x+k) - f(x)g(x)}{h} \quad choose 0$$

$$= \lim_{h \to 0} \frac{f(x+k)g(x+k) + [f(x+k)g(x) - f(x+k)g(x)] - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+k)g(x+k) - f(x+k)g(x)}{h} + \lim_{h \to 0} \frac{f(x+k)g(x) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+k)(\frac{g(x+k) - g(x)}{h})}{h} + \lim_{h \to 0} g(x)(\frac{f(x+k) - f(x)}{h})$$

$$= (\lim_{h \to 0} f(x+k))(\lim_{h \to 0} \frac{g(x+k) - g(x)}{h}) + (\lim_{h \to 0} g(x))(\lim_{h \to 0} \frac{f(x+k) - f(x)}{h})$$

$$= (f(x))(g(x)) + (g(x))(f'(x))$$
So $\frac{d}{dx} [f(x)g(x)] = f(x) \cdot g'(x) + f'(x)g(x)$

Example. Find the derivative of $h(x) = (3x^2 + 14x)(8e^x + 1)$.

First identify the two functions multiplied

$$f(x) = 3x^{2} + 14x$$

$$g(x) = 8e^{x} + 1$$

$$f'(x) = 6x + 14$$

$$g'(x) = 8e^{x} + 0 = 8e^{x}$$

Note,
$$h(x) = f(x) g(x)$$
, so
 $h'(x) = f(x) g'(x) + f'(x) g(x)$
 $= (3x^2 + 14x)(8e^x) + (6x + 14)(8e^x + 1)$
No need to simplify!

You try!

You try!

Example. Find the derivative of $y = e^x(x^2 + 1)(3x - 5)$.

$$f(x) = e^{x}$$

$$g(x) = (x^{2} + 1)(3x - 5)$$

$$g'(x) \quad n \text{ ceas product } n \text{ true,}$$

$$\overline{f}(x) = x^{2} + 1 \quad \overline{g}(x) = 3x - 5$$

$$\overline{f}'(x) = 2x + 0 \quad \overline{g}'(x) = 3$$

$$= 2x$$

$$50 \quad g'(x) = \overline{f}(x) \cdot \overline{g}'(x) + \overline{f}'(x) \cdot \overline{g}(x)$$

$$\overline{f}(x) = x^{2} + 1 \quad \overline{g}(x) = 3$$

$$= 2x$$

$$= \frac{y'}{z} = f(x) g'(x) + f'(x) g(x)$$

= $(e^{x}) [(x^{2}+1)(3) + (2x)(3x-5)] + (e^{x}) [(x^{2}+1)(3x-5)]$

You try!

Example. Evaluate
$$\frac{d}{dx}(xe^{2x})$$
.
Note $e^{2x} = e^{x+x} = e^{x}e^{x}$,
So $\frac{d}{\partial x}(xe^{2x}) = \frac{d}{\partial x}(xe^{x}e^{x})$
 $f'(x) = xe^{x}$
 $g'(x) = e^{x}$
 $g'(x) = e^{x}$
 $f'(x)$ (equive product rule
 $\bigcup(x) = x$
 $\bigvee(x) = e^{x}$
 $\bigcup'(x) = e^{x}$
 $\int'(x) = (x) \cdot \bigvee'(x) + \bigcup'(x) \cdot \bigvee(x)$
 $= (x)(e^{x}) + (i)(e^{x})$
 $\frac{d}{dx}(xe^{2x}) = f(x)g'(x) + f'(x)g(x)$
 $= (xe^{x})(e^{x}) + f(x)g(x) + (i)(e^{x})$
 $f'(x) = xe^{2x} + xe^{x}e^{x} + e^{x}e^{x}$
 $f'(x) = xe^{2x} + xe^{2x} + e^{2x}$
 $f'(x) = xe^{2x} + xe^{2x} + e^{2x}$
 $f'(x) = xe^{2x} + xe^{2x} + e^{2x}$

×

Page 11 of 35

Quotient Rule 3.2.2

3.2.2 Quotient Rule
Theorem. The quotient rule states
$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2}$$
,
where $f^{\frac{1}{3}}$ g are differentiable and $g(x) \neq 0$.
 $Q = \frac{hish}{low}$ then $Q' = \frac{(Low)(D-High) - (Hish)(D-Low)}{(be Low)^2}$

"Low D-High, High D-Low, 2 beLow." (the rhymos D-Low and beLow should be next eachother)

Example. Find the derivative of
$$h(x) = \frac{x^4 - 8x^2}{x - 1}$$
.

$$\begin{array}{c}
\uparrow (x) = x^4 - 8x^2 & g(x) = x - 1 \\
\uparrow (x) = 4x^3 - 8 \cdot 2x^1 & g'(x) = 1 \\
& = 4x^3 - 16x
\end{array}$$

$$h'(x) = \frac{g(x) f'(x) - f(x) g'(x)}{(g(x))^{2}} = \frac{(x-1)(4x^{2} - 16x) - (x^{4} - 8x^{2})(1)}{(x-1)^{2}}$$

You try!

Example. Find the derivative of $y = \frac{e^x - 2x}{1 - xe^x}$.

$$f(x) = e^{x} - 2x$$

$$f'(x) = e^{x} - 2$$

$$g(x) = 1 - xe^{x}$$

$$g'(x) = 0 - \frac{d}{dx} (xe^{x})$$

$$product role$$

$$U(x) = x$$

$$V(x) = e^{x}$$

$$G'(x) = 0 - [U(x) \cdot V'(x) + U'(x) V(x)]$$

$$= - [x \cdot e^{x} + 1 \cdot e^{x}]$$

$$f'(x) - f(x) G'(x)$$

$$= \frac{(1 - xe^{x})(e^{x} - 2) - (e^{x} - 2x)(-[xe^{x} + 1 \cdot e^{x}])}{(1 - xe^{x})^{2}}$$

•

Example. Find the derivative of $y = \frac{3x - e^x}{2}$.

d the derivative of
$$y = \frac{3x - e^x}{2}$$
.
 $y = \frac{3x}{2} - \frac{e^x}{2} = \frac{3}{2}x - \frac{1}{2}e^x$

$$y' = \frac{3}{2} \cdot 1 - \frac{1}{2}e^x$$
Tf the denominator is
a constant, then
the quotient rule is
Never Necessary

Example. Find the derivative of $y = \frac{2x+e^x}{x}$.

$$y = \frac{2x}{x} + \frac{e^{x}}{x} = 2 + \frac{e^{x}}{x}$$

$$y' = 0 + \frac{d}{dx} \left(\frac{e^{x}}{x}\right)$$

$$\int_{(x)=e^{x}} g(x) = x$$

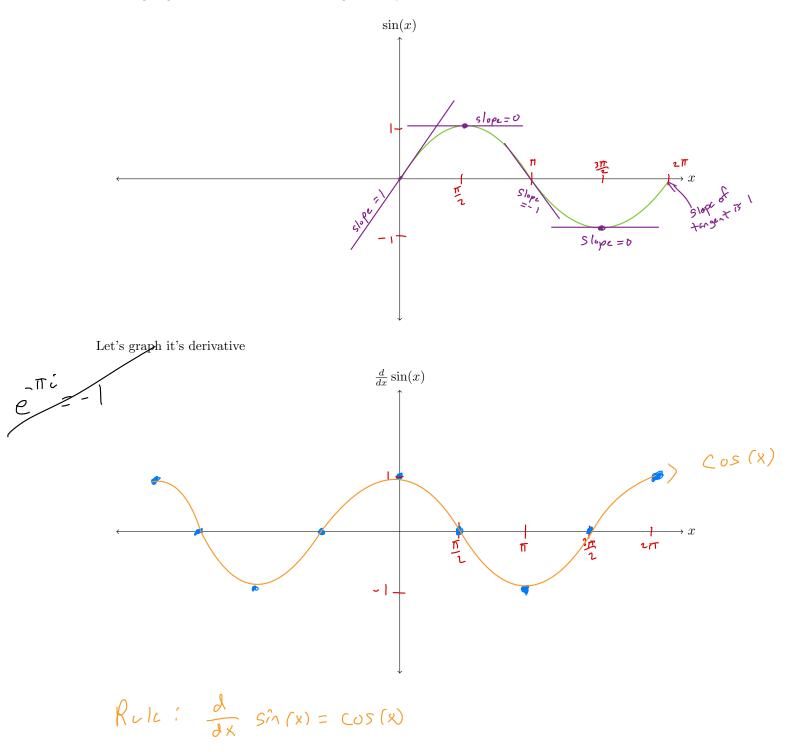
$$f'(x) = e^{x} - g'(x) = 1$$

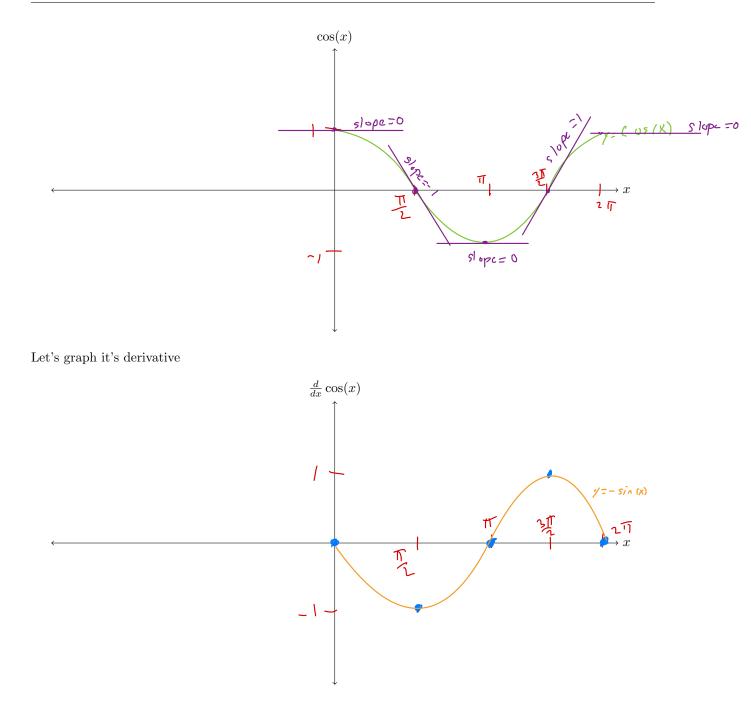
$$y' = 0 + \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^{2}} = 0 + \frac{(x)(e^{x}) - (e^{x})(t)}{(x)^{2}}$$

Example. Find the derivative of
$$y = \frac{x^{\pi} - \sqrt{x}}{x^{3}}$$

 $y' = \frac{x}{x^{3}} - \frac{\sqrt{x}}{x^{3}} = \frac{x}{x^{3}} - \frac{x}{x^{3}} = x^{\pi} - 3 - x^{\frac{1}{2}} - 3$
 $= y - y = x^{\pi} - 3 - x^{-\frac{5}{2}}$
 $y' = (\pi - 3) x^{\pi - 3 - 1} - (-\frac{5}{2}) x^{-\frac{5}{2} - 1}$

If the denominator depends on X, then you may be able to simply to avoid quotient ruly but it may not always work


3.3 **Derivatives of Trigonometric Functions**


Not

Learning Objectives: After completing this section, we should be able to

• derive and apply derivatives for trigonometric functions.

We are going to focus on derivatives of trigonometry functions.

$$Rule: \frac{d}{dx} \cos(x) = -\sin(x)$$

Example. Find the derivative of $f(x) = \tan(x)$.

$$f(x) = f_{xn}(x) = \frac{sin(x)}{cos(x)}$$
Quotient fule:

$$U(x) = sin(x) \qquad v(x) = cos(x)$$

$$v'(x) = cos(x) \qquad v'(x) = -sin(x)$$

$$f'(x) = \frac{V(x) \cdot v'(x) - v(x) \cdot v'(x)}{(v(x))^{2}}$$

$$= \frac{cos(x) \cdot cos(x) - sin(x)(-sin(x))}{(cos(x))^{2}}$$

$$= \frac{cos^{2}(x) + sin^{2}(x)}{cos^{2}(x)}$$

$$= \frac{1}{(cos^{2}(x))}$$

$$= sec^{2}(x) \qquad sec(x) = \frac{1}{cos(x)}$$

Using the quotient rule, we can find the derivatives of $\csc(x)$, $\cot(x)$, and $\sec(x)$. Simplify!

f(x)	f'(x)		
$\sin(x)$	CoS(X)		
$\cos(x)$	- sin (x)		
$\frac{S(x, (x))}{C \circ S(x)} = \tan(x)$	5e c ² (x)		
$\frac{ }{s_i \wedge ix} = \csc(x)$	- <i>CSC</i> (x) [,] Cot (x)		
$\frac{1}{\cos(x)} = \sec(x)$	$Sec(x) \cdot tan(x)$		
$\frac{1}{t_{\text{GA}(x)}} = \frac{c_0 s(x)}{s_1 r_1(x)} = \cot(x)$	- c sc ² (X)		

(Note, derivatives of trig fractors starting with C get a negative sign)

You try!

Example. Find the derivative of f(x) for the following problems.

1.
$$f(x) = e^{x} \sin(x).$$

$$[eft = e^{x} \qquad fight = sin(x)]$$

$$|eft' = e^{x} \qquad fight = cos(x)$$

$$f'(x) = (left)(right') + (left')(right)$$

$$= e^{x} \cdot cos(x) + e^{x} \cdot sin(x)$$

2.
$$f(x) = \frac{x \tan(x)}{1 + \cos(x)}.$$

$$high = x \cdot \tan(x)$$

$$|eft = x \quad right = \tan(x)$$

$$|ow = |t \cos(x)|$$

$$|ow' = 0 + sin(x) = -sin(x)$$

3.
$$f(x) = \sec(x)\tan(x).$$

$$\int (x) = (Sec(x)) \cdot (Sec^{2}(x)) + (Sec(x) \cdot + \epsilon \wedge (x)) (+ \alpha \wedge (x))$$

4. $f(x) = \cot(x)\cos(x).$

$$f'(x) = (c_0 + (x))(-sin(x)) + (-c_{sc}^2(x))(c_0 + (x))$$

_

3.4 Chain Rule

Learning Objectives: After completing this section, we should be able to

- apply the chain rule to obtain the derivative of a composite function.
- apply the chain rule to obtain the derivative of a power function and an exponential function.

Example. Let's try to find the derivative of $y = (3x^2 + x)^2$.

$$\begin{aligned} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_$$

$$= 2(3x^{2}+x) \cdot (6x+1)$$

/

Example:
$$y = (4x^2 + x^{-2})^4$$
.
 $f'(v) = v^4$
 $g'(x) = 9x^{-1} + x^{-2}$
 $f'(v) = 4v^3$
 $g'(x) = 9x^{+} + (-1)x^{-2}$
 $g'(x) = 9x^{-1} + x^{-2}$
 $f(y) = 1 + (4x^2 + x^{-1}) = (4x^2 + x^{-1})^4 = y$
 $y' = f'(yx + x^{-1}) \cdot (8x - 2x^{-3})$
 $f'(yx + x^{-1}) \cdot (8x - 2x^{-3})$
 $f'(x) = \frac{1}{2}x$
 $f'(yx + x^{-1})^3 \cdot (8x - 2x^{-3})$
Example: $y = \cos(x^2 - 1)$.
 $f'(x) = \frac{1}{2}x$
 $g'(x) = 5i_A(x)$
 $f'(v) = -5i_A(v)$
 $g'(x) = 1 + (x^2 - 1) + (x^2 -$

$$f(v) = tan (v) \qquad g(x) = 5x^{2} + 2x$$

$$f'(v) = sec^{2}(v) \qquad g'(x) = 10x + 2$$

$$Y = f(g(x)) = f(5x^{2} + 2x) = tan(5x^{2} + 2x)$$

$$= y' = f'(g(x)) \cdot g'(x)$$

$$= f'(5x^{2} + 2x) \cdot (10x + 2)$$

$$= sec^{2}(5x^{2} + 2x) \cdot (10x + 2)$$

We can combine rules.

We can combine rules.
Example.
$$y = \cos^{3}(x^{2} - 1) = (\cos(x^{2} - 1))^{3}$$

 $f(u) = u^{3}$
 $f'(u) = 3u^{2}$
 $g'(x) = (chain rule problem from 2 examples)$
 $agu = -sin(x^{2} - 1)(2x)$

$$\begin{aligned} y' &= f'(g(x)) \cdot g'(x) \\ &= f'(cos(x^2 - 1)) \cdot (-sin(x^2 - 1) \cdot (2x)) \\ &= g(cos(x^2 - 1))^2 \cdot (-sin(x^2 - 1)) \cdot (1x) \\ \end{aligned}$$
For try!
Example. $y = \sqrt{\sin(3x)}$. $= y = g(sin(3x))^{\frac{1}{2}}$

$$\begin{aligned} &f(v) = 0^{\frac{1}{2}} \\ &f(v) = 0^{\frac{1}{2}} \\ &f'(v) = \frac{1}{2} \\ &g'(x) = -v \\ &f'(v) = sin(v) \\ &g'(x) = 3x \\ &f'(v) = cos(v) \\ &g'(x) = 3 \end{aligned}$$

$$\begin{aligned} &g'(x) = f'(g(x)) \cdot g'(x) \\ &= f'(g(x)) \cdot g'(x) \\ &= f'(g(x)) \cdot g'(x) = f'(sin(3x)) \cdot [cos(3x) \cdot 3] \\ &= \frac{1}{2} (sin(3x))^{\frac{1}{2}} \cdot [cos(3x) \cdot 3] \end{aligned}$$

You try!

Example.
$$y = \left(\frac{\sin(x)}{1+\cos(x)}\right)^{5}$$
.

$$f(u) = u^{5}$$

$$g'(x) = \frac{\sin(x)}{1+\cos(x)}$$

$$\int (u) = (1+\cos(x))^{2}$$

$$50 \quad \gamma' = f'(g(x)) \cdot g'(x)$$

$$= f'(\frac{\sin(x)}{1+\cos(x)}) \cdot g'(x)$$

$$= 5(\frac{\sin(x)}{1+\cos(x)})^{4} \cdot \frac{(1+\cos(x)) \cdot \cos(x) - \sin(x)(0 - \sin(x))}{(1 + \cos(x))^{2}}$$

Recall we have the derivative of $y = e^{2x}$ is $y' = 2e^{2x}$. Let's think of it with the chain rule.

$$\begin{aligned} f(u) &= e^{U} \qquad g(x) = 2x \\ f'(u) &= e^{U} \qquad g'(x) = 2 \\ y' &= f'(g(x)) \cdot g'(x) = f'(2x) \cdot 2 = e^{2x} \cdot 2 \\ \text{Constant chin shorter!} \quad Tf \quad y &= e^{Cx} \cdot then \quad y' &= e^{Cx} \cdot c, \text{ for any constant c} \\ what \quad about \quad y &= 5^{x}? = \lambda \quad h(y) = h(s^{x}) = x \cdot h(s) \\ &= \lambda \quad h(s) = x \cdot h(s) = x \cdot h(s) \\ &= \lambda \quad y' = e^{h(s) \cdot x} = s^{x} \\ &= \lambda \quad y' = e^{h(s) \cdot x} = s^{x} \cdot h(s) \\ \text{General Exponential Derivative: } Tf \quad y &= b^{x} \quad then \quad y' &= b^{x} \cdot h(b), \quad \text{for } b > 0 \\ &= x \quad y' = e^{(4x^{2} - 5x + 1)} \\ f(u) &= e^{U} \qquad g(x) = 4x^{2} - 5x + 1 \\ f'(u) &= e^{U} \qquad g'(x) = 8x \cdot s \\ y' &= f(g(x)) \cdot g'(x) \\ &= f(4x^{2} - 5x + 1) \cdot (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) \cdot (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - s) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) \\ &= (e^{4x^{2} - 5x + 1}) (8x - 5) \\ &= (e^{4x^{2} - 5x + 1}) \\ &= (e$$

You try!

_

Example.
$$y = 2e^{(3\cos^2(x^4))}$$
.
 $y' = (general exponentia) chain rule) = 2e^{3\cos^2(x^4)} \begin{bmatrix} \frac{1}{\sqrt{3}} & 3\cos^2(x^4) \end{bmatrix}$
 $\frac{d}{dx} & 3\cos^2(x^4) & requires chain rule.$
 $f(u) = 3 \cdot u^2$
 $f'(u) = 6 \cdot u$
 $3\cos^2(x^4)$
 $= 3(\cos^2(x^4))$
 $= 3(\cos^2(x^4)) = f'(g(x)) \cdot g'(x)$
 $= -\sin(x^4) \cdot 4x^3$
 $= 2e^{3\cos^2(x^4)} = f'(g(x)) \cdot g'(x)$
 $= -\sin(x^4) \cdot 4x^3$
 $= 2e^{3\cos^2(x^4)} = f'(g(x)) \cdot g'(x)$
 $= -\sin(x^4) \cdot 4x^3$

Forgot the quotient rule? No problem!

$$\frac{Product}{Product} rule ; \frac{d}{dx} \left(\frac{f(x) \cdot g(x)}{g(x)} \right) = f(x) \cdot g'(x) + f'(x) \cdot g(x)$$

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{d}{dx} \left[f(x) \cdot (g(x))^{-1} \right]$$

$$|eft = f(x) + right - (g(x))^{-1} + right - (g(x))^{-1} + right - g'(x) + right$$

When do we need the quotient rule?

1.
$$y = \frac{x^4 + e^x}{5} = \frac{x^4}{5} + \frac{e^x}{5} = \frac{1}{5}x^4 + \frac{1}{5}e^x$$

 $y' = \frac{1}{5}4x^3 + \frac{1}{5}e^x$

(constant in denominator, we do not need quotient rule)

2.
$$y = \frac{5}{x^4 + e^x}$$
. = $5(x^4 + e^x)^{-1}$ (chein rule)
Outside = $5v^{-1}$ inside = $x^4 + e^x$ (constant in numerator
outside = $5v^{-1}$ inside = $x^4 + e^x$ (constant in numerator
outside = $5v^{-1}$ inside = $4x^3 + e^x$ (constant in numerator
outside = $5v^{-1}$ inside = $4x^3 + e^x$ (constant in numerator
 $x' = outside (inside) \cdot (inside)$
 $y' = s(-1)(x^4 + e^x)^{-2}$. ($4x^3 + e^x$)
3. $y = \frac{x^4 + e^x}{x - 1}$. (If both numerator and denowinator are
functions of x and there are no immediate
cance ll ations use quotient rule)

3.6 Derivatives of Logarithms and Inverse Trigonometric Functions

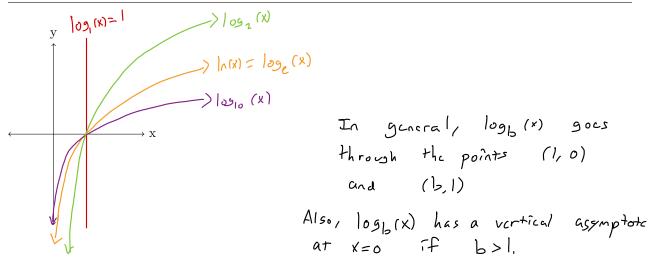
Learning Objectives: After completing this section, we should be able to

- define the general logarithmic functions
- derive the derivative of logarithmic functions.
- derive the derivatives of all inverse trigonometric functions.

3.6.1 Logarithmic Functions

Key properties of logarithms:

1.
$$\log(b^x) = \mathbf{x} \cdot \log(\mathbf{b})$$


2.
$$\log(x \cdot y) = \int c \cdot x + \int c \cdot y +$$

3.
$$\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$$

4.
$$\log(x+y) = \int_{O_{0}}^{O_{0}} (x+y') = \int_{O_{0}}^{O_{0}} (x+y') = \int_{O_{0}}^{O_{0}} \log x = \int_{O_{0}}^$$

Other Bases:

$$l_{0,G_{b}}(x)$$
 is the inverse of $b_{j,e_{1},j_{1}}$
 $\cdot l_{0,0}(10^{x}) = x$
 $\cdot 2^{l_{0,0}}(x) = x$

Logarithms and exponentials have an inverse relationship.

$$|n(e^{x}) = x \quad or \quad e^{|n(x)|} = x$$

$$|og_{b}(b^{x}) = x \quad or \quad b^{|ob_{b}(x)} = x$$

Question. How do we take the derivative of a logarithm?

Let
$$y = ln(x)$$
. This implies $x = e^{y}$, as $e^{(y)} = ln(x)$.
 $= e^{y} = x$
 $= e^{y} = x$
To find the derivative of $y = ln(x)$, it is equivalent to find $\frac{dy}{dx}$.
So, we will implicitly differentiate $x = e^{y}$ to find $\frac{dy}{dx}$.
 $= 1 \qquad \frac{d}{dx} = \frac{d}{dx} e^{y}$
 $= 1 \qquad \frac{d}{dx} = \frac{d}{dx} e^{y}$
 $= 1 \qquad \frac{d}{e^{y}} = \frac{dy}{dx}$.
 $\frac{d}{dx} = \frac{d}{dx} e^{y}$
 $= 2 \qquad \frac{d}{e^{y}} = \frac{dy}{dx}$.
 $\frac{d}{dx} = \frac{d}{dx} = \frac{d}{dx}$.
 $\frac{d}{dx} = \frac$

• Note, if x < 0, then $y = \ln ix$) is indefined, but $y = \ln (-x)$ is defined jeta, if x = -4, then $y = \ln (-4)$ is undefined, but $y = \ln (-(-4) = \ln(4))$ is defined (onsider $y = \ln (-x) = 2$ $e^{y} = -x$ $\frac{d}{dx} e^{y} = \frac{d}{dx} - x$ $= 2e^{y} \frac{dy}{dx} = -1$ $= 2e^{y} \frac{dy}{dx} = -\frac{1}{e^{y}} = -\frac{1}{-x} = \frac{1}{x}$ $\Rightarrow \frac{d}{dx} \ln (ixi) = \frac{1}{x}$, if $x \neq 0$ • Other bases: $y = \log_{b}(x) = 2$ $b^{y} = x$ $= 2e^{y} \frac{dy}{dx} = -\frac{1}{e^{y}} = -\frac{1}{e^{y}}$

$$= \frac{d}{dx} \log_{2}(x) = \frac{1}{x \cdot \ln(b)}$$

$$= \frac{d}{dx} \log_{2}(x) = \frac{1}{x \cdot \ln(b)}$$

$$= \frac{d}{dx} = \frac{1}{b} \ln(b) = \frac{1}{x \cdot \ln(b)}$$

$$= \frac{d}{dx} = \frac{1}{b} \ln(b) = \frac{1}{x \cdot \ln(b)}$$

MIH 150 Section 3.0: Derivatives of Logs and inverse Trig Functions Fa	age 25 01 55
Let's practice! Recall $\frac{d}{dx} b^{\times} = b^{\times} \cdot h(b)$	
1. $y = 2^x$	
$y' = 2^{x} \cdot \ln(z)$	
y = z	
2. $y = \pi^x$	
$y' = \pi^{X} \cdot (n(\pi))$	
3. $y = 3^{x^2+2x+1}$ $f(v) = 3$ $g(x) = x^2+2x+1$ $g(x) = f(g(x)) \cdot g'(x)$ $f(v) = f(y^2+2x+1) \cdot (2x)$	
$+(v) = 1$ $-(v < 2 + 2 + 0) + (2 \times 2$	+2/
	72)
4. $y = 8 \cdot 3^x$	
$y' = 8 \cdot \frac{1}{3x} = 8 \cdot \frac{1}{3x} \cdot \frac{1}{3x} \cdot \frac{1}{3x} = 8 \cdot \frac{3}{3x} \cdot \frac{1}{3x} \cdot 1$, x
$5 - y = 4^{-x}$ choice $y = 4^{-x} = (4^{-1})^{x} = 1$	(4)
$0. y - 4 \qquad 0 \qquad (\qquad) \qquad \qquad$	、
$y' = \underbrace{y'}_{deriv} \underbrace{f}_{deriv} \underbrace{f}_{deri$	(4 /
$\frac{deriv}{dt} = \frac{1}{4} \frac{dr}{dt} + \frac{1}{4} \frac{dr}{dt}$	
$f(u) = 4 \ln(u) g(x) = 3x = 2 = 7 (3 + 3 + 3)$	
$f'(u) = 4 \cdot \frac{1}{2}$ $g'(x) = 3$ $= 4 \cdot \frac{1}{3x} \cdot 3$	
7. $y = \ln(12x^5) + 12x^5$ $y' = f'(g(x)) \cdot g'(x) + \frac{d}{dx} 12x^5$	
$f(u) - h(u) = a(x) = 12x^{3}$ =) $\int \int (u - 5) (125) x^{4} + (125) x^{4}$	
$f'(x) = \frac{1}{2} g'(x) = 12 \cdot 5 \cdot x^{4} \qquad = \frac{1}{12 \times 5} \cdot /2 \cdot 5 \cdot x^{4} + /2 \cdot 5 \cdot x^{4}$	
8. $y = \ln(\tan(x))$ $f(u) = \ln(u)$ $g(x) = +a_n(x)$ $= / / = f'(g(x)) \cdot g'(x)$ $f'(u) = \frac{1}{2}$ $g'(x) = \sec^2(x)$ $= f'(+a_n(x)) \cdot \sec^2(x)$	
$f'(u) = \frac{1}{2} \qquad g'(x) = \sec^2(x) \qquad = \frac{1}{4a(x)} \cdot \sec^2(x) \qquad = \frac{1}{4a(x)} \cdot \sec^2(x)$	
9. $y = \log_5(3x)$ $f(v) = \log_5(v)$ $g(x) = 3x$ \longrightarrow $\gamma' = f'(g(x)) \cdot g'(x)$	
$f'(y) = \frac{1}{2}$ $g'(x) = 3$ $= \frac{1}{2} + $	
$= \frac{1}{2^{1/2}} \cdot 3$	
10. $y = \log_b(\tan(x))$ $f(\omega) = \log_b(\omega)$ $g(x) = \tan(x)$ $f'(\omega) = \frac{1}{U \cdot \ln(b)}$ $g'(x) = \sec^2(x) = \sum_{i=1}^{N} \frac{f'(g(x)) \cdot g'(x)}{i = f'(\tan(x)) \cdot \sec^2(x)}$	
$f'(u) = \frac{1}{(1)!a(b)}$ $g'(x) = sec^{2}(x) = f'(tan(x)) \cdot sec^{2}(x)$	
11. $y = \log_2(e^x)$ $y = \log_2(e^x)$ $= \frac{1}{\tan(x) \cdot \ln(x)}$ $= \sec^2(x)$	
$f(u) = \log_{2}(u) \qquad g(x) = e^{x} = y' = f(g(x)) \cdot g'(x) f'(u) = \frac{1}{1 + 1} \qquad g'(x) = e^{x} = y' = f(g(x)) \cdot g'(x) = f(g(x)) \cdot g'(x) = e^{x} = y' = f(g(x)) \cdot g'(x) $	
$f'(u) = \frac{1}{u \cdot l_n(u)}$ $g'(x) = e^{x} = y = f'(e^{x}) \cdot e^{x}$	
$= \frac{1}{e^{\times 1/n}(2)} \cdot e^{\times} = \cdots$	$=$ $\frac{1}{1}$
e ^x .//(2)	1(2)

3.6.2 Inverse Trigonometric Functions Consider $y = \sin^{-1}(x) = \alpha(c \sin(x))$ is the inverse of $\sin(x)$; i.e., $\alpha(c \sin(x)) = x$ or $\sin(\alpha(c \sin(x))) = x$ Note $y = \sin^{-1}(x) \neq \frac{1}{\sin(x)}$ Let's sketch a graph of $\sin(x)$ (over $[-\pi, \pi]$) $\sin(x)$ y= sinix) +=12 To find inverse factus we "replace" x and y. Graphically, this is equivalent to mirroring the factors graph over the line y=x. If we mirrored all of sin(x), then we would fail the vertical line test. So, we restrict the domain of sin(x) to to to then considering inverse sin(x) y=arcân (x) y=x (rminor linc y=sin(x) $\rightarrow x$ domain of $sin(x) = \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} = r ange of arcsin(x)$ (restricted) range of sin(x)= [-1,] = domain of arcsin(x)

Example. Compute $\arcsin\left(\frac{\sqrt{3}}{2}\right)$.

Example. Compute $\arcsin\left(\sin\left(\frac{3\pi}{4}\right)\right) =$

Intertionally omitted

Example. Compute $\arccos\left(\frac{\sqrt{3}}{2}\right) =$

=> ?

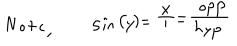
Example. Compute $\arctan\left(-\frac{1}{\sqrt{3}}\right) =$

How do we find derivatives of inverse trig?

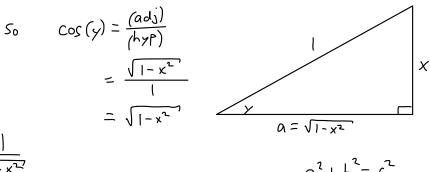
Example. Let $y = \arctan(x) = \tan^{-1}(x)$ $+ \tan^{-1}(x)$ $+ \tan^{-1}(x)$ $X = \tan(y)$ The derivative of $\arctan(x)$ is $\frac{dy}{dx}$ $\frac{dy}{dx} = \frac{d}{dx} \tan(y)$

$$l = Sec^{2}(y) \cdot \frac{dy}{dx}$$

2) =>
$$\frac{dy}{dx} = \frac{1}{\sec^2(y)}$$
,
want a formula that does
not depend on y


Note
$$X = \pm an(y) = \frac{(opp)}{(as_{3})}$$

 $\pm an(y) = \frac{X}{1} \frac{(opp)}{(ad_{3})}$
 $Recall, Sec(y) = \frac{1}{cos(y)} = \frac{1}{(ad_{3})}$
 $= \sum sec(y) = \sqrt{1+x^{2}}$
 $= \sum sec^{2}(y) = \sqrt{1+x^{2}}$
 $= \sum sec^{2}(y) = 1 + x^{2}$
 $= \sum c = \sqrt{1^{2} + x^{2}} = \sqrt{1+x^{2}}$


Example. Let $y = 10 \arctan(4x^2)$. Find y'.

outside = 10 arctan (u)
outside = 10 arctan (u)
inside =
$$4x^2$$

inside = $4x^2$
inside = $8x$
 $y' = outside'(inside)$. inside
 $= outside'(4x^2)$. $8x$
 $= 10 \frac{1}{|t+(4x^2)^2}$. $8x$

You try!

Example. Find a formula for $\frac{d}{dx} \arcsin(x)$. $y = \operatorname{Arcsin}(x) = X = \operatorname{Sin}(y)$ $\frac{d}{dx} X = \frac{d}{dx} \operatorname{Sin}(y)$ $y = \operatorname{Cos}(y) \cdot \frac{dY}{dx}$ $= X = \frac{d}{dx} = \frac{1}{\cos(y)}$

 $a^{2} + b^{2} = c^{2}$ $a^{2} + x^{2} = l^{2} = l$ $= a^{2} = l - x^{2}$ $= a^{2} = \sqrt{1 - x^{2}}$

$$S \circ \frac{dy}{dx} = \frac{1}{\cos(y)} = \frac{1}{\sqrt{1-x^{2}}}$$
$$\implies \frac{d}{dx} \arccos(x) = \frac{1}{\sqrt{1-x^{2}}}$$

You try!

Example. Find a formula for $\frac{d}{dr} \arccos(x)$. y = arccos(x) = X = cos(y) $\frac{d}{dx} X = \frac{d}{dx} \cos(\gamma)$ \Rightarrow $| = -\sin(y) \frac{dy}{dx}$ =) $\frac{dy}{dx} = -\frac{1}{\sin(x)}$ R_{ccall} $X = Cos(y) = \frac{(a\lambda_j)}{(h_{yp})} = \sum Cos(y) = \frac{X}{l} \frac{(a\lambda_j)}{(h_{yp})}$ V $\sqrt{1-x^2}$ So $\sin(\gamma) = \frac{(opp)}{(hyp)} = \frac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2}$ $\Rightarrow \frac{dy}{dx} = -\frac{1}{\sin(y)} = -\frac{1}{\sqrt{1-x^{2}}}$ $\Rightarrow \frac{d}{dx} \operatorname{arc} \cos(x) = -\frac{1}{\sqrt{1-x^{2}}}$

3.6.3 Summary
•
$$\frac{d}{dx}e^{f(x)} = e^{\int (x)} f'(x)$$

• $\frac{d}{dx}b^{f(x)} = b^{\int (x)} [h(b) \cdot f'(x)]$
• $\frac{d}{dx}\ln(f(x)) = \frac{1}{f(x)} \cdot f'(x),$
(as $\frac{d}{dx}\ln(f(x)) = \frac{1}{f(x)} \cdot f'(x),$
(as $\frac{d}{dx}\ln(h(x)) = \frac{1}{X_{\chi}}$ and $dx + hc - chain - chc)$
• $\frac{d}{dx}\log_b(f(x)) = \frac{1}{[h(b) \cdot f(x)]} \cdot f'(x)$
• $\frac{d}{dx}\operatorname{arccos}(x) = -\frac{1}{\sqrt{1-x^2}}$
• $\frac{d}{dx}\operatorname{arccos}(x) = -\frac{1}{\sqrt{1-x^2}}$
• $\frac{d}{dx}\operatorname{arccon}(x) = \frac{1}{(1+x^2)}$

3.9 Related Rates

Learning Objectives: After completing this section, we should be able to

• solve related rates problems in various real-life situations.

Related rates are all about how multiple rates of change are connected. For example, if I drive north at 15 mph and you drive south at 15 mph, the distance between us is increasing at a rate of 30 mph. Tips:

• Interpret the derivatives

as rates of change. Be careful about the significe, positive or negative · You may need to come up with an equation (often Pythagorcan) a picture with labels Draw • Don't mix up Cates and Quentities decinations And Autor And Autor 9 Measuring rate of change Example. Two boats leave a port at 12:00pm. One travels West at 20mph and the other South at 15mph. How fast are they moving away from each other at 1:30pm? boat X at a rate of 20 mph - Port Х boat y at a rate of Y 15 MP 2 is the Note, 7 distance between boats 2 Want to find the rate of change of Z, as this measures how fast the two boats are moving away from each other. Note, 12:00 pm to 1:30 pm is 1.5 hours • X is the distance travelled in 1,5 hours by the west-bound boat • Y is the distance travelled in 1,5 hours by the south-bound boat • 2 is the distance between the two boats after 1,5 hours • $\frac{dx}{dt} = 20$ mph => the rate of change of the vistance Xjie, the speed of west - bound boat · dx = 15 mph => the rate of change of the distance yine, the speed of south-bound boat is the rate of change of the distance between the 2 boats FIND THIS Example Continued:

$$X = (r_{0k}) (t_{1M_{k}}) = (20 \text{ mph}) (1.5 \text{ hours}) = 30 \text{ miles}$$

$$y = (r_{0k}) (t_{1M_{k}}) = (15 \text{ mph}) (1.5 \text{ hours}) = 22.5 \text{ miles}$$

$$x^{2} + y^{2} = z^{2} (\beta y thagoren TLm)$$

$$30^{2} + (22.5)^{2} = z^{2}$$

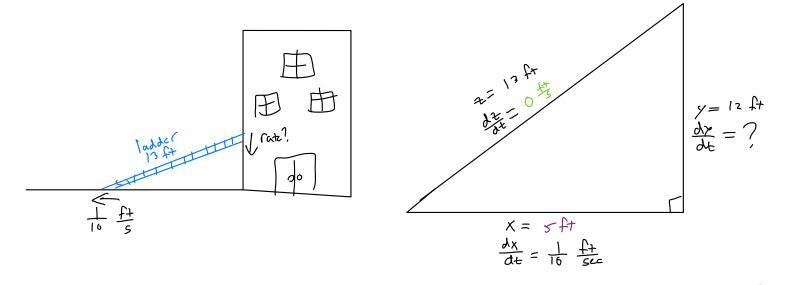
$$\Rightarrow z = \sqrt{30^{2} + 22.5^{2}} = 37.5 \text{ miles}$$

$$x = 30 \text{ miles} \frac{dx}{dt} = 20 \text{ Mph}$$

$$y = 22.5 \text{ miles} \frac{dy}{dt} = 15 \text{ mph}$$

$$z = 37.5 \text{ miles} \frac{dy}{dt} = 15 \text{ mph}$$

$$z = 37.5 \text{ miles} \frac{dy}{dt} = 2 \text{ mph}$$
Note to find rates of change with respect to time


$$\frac{d}{dt} x^{2} + \frac{d}{dt} y^{2} = \frac{d}{dt} z^{2}$$
Note, $x, y, \frac{1}{32}$ all depend time implicitly

$$=> 2X (\frac{dx}{dt}) + 2y (\frac{dy}{dt}) = 2z (\frac{dx}{dt})$$

$$=> 2(30) (20) + 2(22.5) (15) = 2(37.5) (\frac{dz}{dt})$$

$$=> \frac{dz}{dt} = \frac{1875}{75} = 2.5 \text{ mph}$$
So, after 1.5 hours, the distance between the 2 hours is changing at a rate of 25 mph

Example. A ladder 13 feet long leans against a building. The base is pulled away from the wall at a rate of $\frac{1}{10} \frac{\text{ft}}{\text{sec}}$. How fast is the top moving down when the top is 12 feet above ground?

Note, $\frac{d2}{dt} = 0$ for as the length of the ladder is constantly 13 ft $x^{2} + y^{2} = z^{2}$ $= 2 + x^{2} + 12^{2} = 13^{2}$ $\Rightarrow x = \sqrt{13^{2} - 12^{2}} = 5$ ft

- $\frac{Q}{X = 5 ft}$ $\frac{R_{ott s}}{X = 5 ft}$ $\frac{dx}{dt} = \frac{1}{10} f_{sec}$ $\frac{dx}{dt} = ? f_{sec}$ $\frac{dy}{dt} = ? f_{sec}$ $\frac{dt}{dt} = 0 f_{sec}$
 - $\frac{d}{dt}x^{2} + \frac{d}{dt}y^{2} = \frac{d}{dt}z^{2}$ $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2\frac{dt}{dt}$ $2(5)(\frac{1}{10}) + 2(12)\frac{dy}{dt} = 2(13)(0)$ $1 + 24\frac{dy}{dt} = 0$ $= 24\frac{dy}{dt} = -1 = 2\frac{dy}{dt} = -\frac{1}{24}\frac{ft}{sec}$ The top of the ladder is moving down the minute sign build in the sign

You try!

Example. Suppose you are blowing up a spherical balloon at a rate of $3 \frac{\text{cm}^3}{\text{s}}$. How fast is the radius of the balloon changing when $r = 5 \text{ cm}^2$. Volume of $\gamma = \frac{1}{3} \pi r^3$.

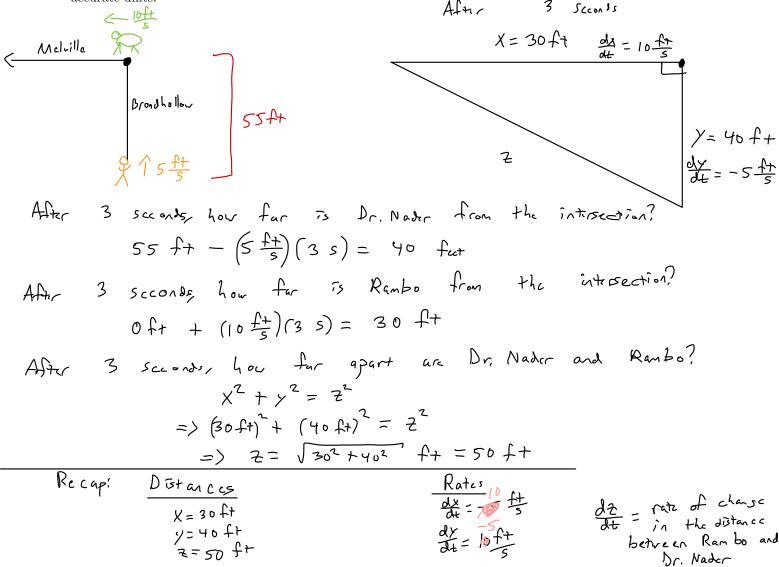
Rates in problem;

$$\frac{dV}{dt} = 3 \frac{cm^{3}}{5}$$

$$\frac{dr}{dt} = ? \text{ Find His,}^{l}$$

$$\Rightarrow \frac{dV}{dt} = \frac{d}{3} \pi \frac{d}{3} \pi r^{3}$$

$$\Rightarrow \frac{dV}{dt} = \frac{d}{3} \pi \frac{d}{3} r^{3} = \frac{d}{3} \pi 3 r^{2} \frac{dr}{dt}$$


$$\Rightarrow \frac{dV}{dt} = \frac{d}{3} \pi \frac{d}{3} r^{3} = \frac{d}{3} \pi 3 r^{2} \frac{dr}{dt}$$

$$\Rightarrow \frac{dV}{dt} = \frac{d}{3} \pi \frac{d}{3} r^{3} = \frac{d}{3} \pi 3 r^{2} \frac{dr}{dt}$$

$$\Rightarrow \frac{dV}{dt} = \frac{d}{3} \pi \frac{d}{3} r^{3} = \frac{d}{3} \pi 3 r^{2} \frac{dr}{dt}$$

Example. John Nader is quickly walking north on Broadhollow Road at 5 feet per second while watching Rambo the Ram trotting west on Melville Road at 10 feet per second. At the moment, Rambo is at the intersection of Melville and Broadhollow and John Nader is 55 feet away from the same intersection.

After three seconds, at what rate is the distance between Marvin and Blaster increasing? Remember to use accurate units!

$\frac{d}{dt} \chi^{2} + \frac{d}{dt} \chi^{2} = \frac{d}{dt} 2^{2}$ $= 2 \chi \frac{d\chi}{dt} + 2 \chi \frac{d\chi}{dt} = 2 \frac{d^{2}}{dt}$ $= 2 (30 \text{ f} +) (-\sqrt{51} \frac{10 \text{ f}}{10 \text{ f}}) + 2 (40 \text{ f} +) (-5 \frac{\text{f} +}{5}) = 2 (50 \text{ f} +) \frac{d^{2}}{dt}$ $= 2 (20 \text{ f} +) (-\sqrt{51} \frac{10 \text{ f}}{5}) + 2 (40 \text{ f} +) (-5 \frac{\text{f} +}{5}) = 2 (50 \text{ f} +) \frac{d^{2}}{dt}$ $= 2 (2 \cdot 30 \cdot 10 + 2 \cdot 40 \cdot (-5) \frac{\text{f} +}{5}) = (100 \text{ f} +) \frac{d^{2}}{dt}$ $= 2 (2 \cdot 30 \cdot 10 + 2 \cdot 40 \cdot (-5) \frac{\text{f} +}{5}) = 2 \frac{d^{2}}{dt}$								
	$-) \frac{d^2}{dt}$ 3 sec	= 2.30.10 - 1 onds the	$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}$	$\frac{f_{+}}{5} = 2$	fraction			
Kan	n 600 i		asing at		of $2\frac{f+}{s}$			
· · · · ·		· · · · · · ·	· · · · · · ·	· · · · · · ·				
					· · · · · · · · · · · · ·			
					· · · · · · · · · · · · · ·			
					· · · · · · · · · · · · ·			